Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals

نویسندگان

  • Wei Liu
  • Qiliang Xin
  • Xiao Wang
  • Sheng Wang
  • Huarong Wang
  • Wenqiang Zhang
  • Ye Yang
  • Yanhao Zhang
  • Zhiyuan Zhang
  • Chao Wang
  • Yang Xu
  • Enkui Duan
  • Guoliang Xia
چکیده

In mammals, oocytes are arrested at the diplotene stage of meiosis I until the pre-ovulatory luteinizing hormone (LH) surge triggers meiotic resumption through the signals in follicular granulosa cells. In this study, we show that the estradiol (E2)-estrogen receptors (ERs) system in follicular granulosa cells has a dominant role in controlling oocyte meiotic resumption in mammals. We found that the expression of ERs was controlled by gonadotropins under physiological conditions. E2-ERs system was functional in maintaining oocyte meiotic arrest by regulating the expression of natriuretic peptide C and natriuretic peptide receptor 2 (NPPC/NPR2), which was achieved through binding to the promoter regions of Nppc and Npr2 genes directly. In ER knockout mice, meiotic arrest was not sustained by E2 in most cumulus-oocyte complexes in vitro and meiosis resumed precociously in pre-ovulatory follicles in vivo. In human granulosa cells, similar conclusions are reached that ER levels were controlled by gonadotropins and E2-ERs regulated the expression of NPPC/NPR2 levels. In addition, our results revealed that the different regulating patterns of follicle-stimulating hormone and LH on ER levels in vivo versus in vitro determined their distinct actions on oocyte maturation. Taken together, these findings suggest a critical role of E2-ERs system during oocyte meiotic progression and may propose a novel approach for oocyte in vitro maturation treatment in clinical practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pre-ovulatory LH/hCG surge decreases C-type natriuretic peptide secretion by ovarian granulosa cells to promote meiotic resumption of pre-ovulatory oocytes.

BACKGROUND In mammalian follicles, oocytes are arrested at the diplotene stage of prophase I until meiotic resumption following the LH surge. Recently, C-type natriuretic peptide (CNP), encoded by natriuretic peptide precursor type C (NPPC) was found to suppress mouse oocyte maturation by promoting cyclic guanosine 5'-monophospate (cGMP) production in cumulus cells. However, regulation of NPPC/...

متن کامل

Paracrine actions of oocytes in the mouse pre-ovulatory follicle.

In mammals, ovulation requires a tight control of extracellular matrix modifications, within both the follicle wall and the inner mass of granulosa cells surrounding the oocyte, namely the cumulus cells. During the pre-ovulatory period, mural granulosa cells promote selective degradation of perifollicular matrix, resulting in the formation of a follicle rupture site. Conversely, cumulus cells s...

متن کامل

Macrophage colony-stimulating factor (M-CSF) is an intermediate in the process of luteinizing hormone-induced decrease in natriuretic peptide receptor 2 (NPR2) and resumption of oocyte meiosis

BACKGROUND Luteinizing hormone (LH) regulation of the ligand, natriuretic peptide precursor type C, and its receptor, natriuretic peptide receptor 2 (NPR2), is critical for oocyte maturation; however, the mechanism is not fully understood. Macrophage colony-stimulating factor (M-CSF) has recently been shown to be involved in oocyte maturation and ovulation. In the present study we determined wh...

متن کامل

Angiotensin II, progesterone, and prostaglandins are sequential steps in the pathway to bovine oocyte nuclear maturation.

Oocyte meiotic resumption is triggered by the ovulatory gonadotropin surge; in cattle, angiotensin II (AngII) and prostaglandins (PG) are key mediators of this gonadotropin-induced event. Here, we tested the hypothesis that progesterone (P(4)) is also involved in oocyte meiotic resumption induced by the gonadotropin surge. In Experiment I, P(4) induced nuclear maturation in a dose-dependent man...

متن کامل

Meiosis and oogenesis

How does the follicle coordinate meiosis progression? The ovarian follicle is an integrated system in which follicular cells regulate oocyte progression into meiosis. Oocytes are large cells that divide asymmetrically to preserve stores for future embryonic development. To do this, they must coordinate asymmetric spindle positioning with cell cycle progression and chromosome segregation. In mam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017